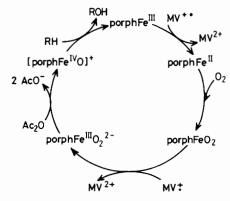
A Chemical Model of Cytochrome P-450: Mono-oxygenase-like Activation of Dioxygen

Elene I. Karasevich, Alexander M. Khenkin, and Alexander E. Shilov*

Institute of Chemical Physics, U.S.S.R. Academy of Sciences, 142 432 Chernogolovka, U.S.S.R.

A new model for cytochrome P-450 activation of O₂ on iron porphyrin as a catalytic centre in the presence of Zn(Hg) as a reducing agent, methylviologen as a mediator, and acetic anhydride as an acylating agent is proposed.


Cytochrome P-450 is a typical mono-oxygenase, inserting one oxygen atom of O₂ into a substrate molecule and using the other to form H₂O.¹ Sligar et al.² obtained evidence for the initial acylation and cleavage of the O-O bond, prior to water formation, in the system $P-450 + {}^{18}O_2 + dihydrolipoic acid.$ Simple systems modelling the active centre of P-450 have been prepared from the π-cation-radical [(porph)FeO]*+,† formed by oxygen atom transfer from peracids³ and by acylation of haem peroxo complexes4 by acetic anhydride.

In order to construct a better model of O₂ activation by P-450 two stages must be united in one system: the reduction of O₂ co-ordinated on haem to a peroxo complex and the acylation of the latter with cleavage of the O-O bond. The synthesis of the peroxo complex by reduction of co-ordinated dioxygen has been achieved recently in aprotic media at low temperatures⁵ and using sterically hindered TpivPPFeBr.^{6—8} The first example of electrochemical reductive O_2 activation has also been reported, using haem, supported at the cathode surface, and an acylating agent.4,9

This communication deals with reductive O₂ activation at Fe-porph by zinc amalgam in the presence of methylviologen

(MVCl₂) as an electron transfer agent, and acetic anhydride as

In the absence of MVCl₂ the reaction is about 100 times slower. The absence of any other component stops the substrate oxidation completely. In the process of cyclohexane

Scheme 1. Catalytic cycle for the cytochrome P-450 model system $[Zn(Hg) + MVCl_2 + porphFe + O_2 + Ac_2O + RH].$

an acylating agent, in acetonitrile. In the absence of the porphyrin complex no noticeable O2 absorption takes place indicating that the cation-radical formed from MVCl2 is stable in an O2 atmosphere in this solvent. Addition of Fe-porph to the mixture leads to O2 absorption and oxidation of the substrate (Table 1).

[†] Abbreviations: porph = porphyrin, TPP = tetraphenylporphyrin, TF₅PP = tetra(pentafluorophenyl)porphyrin, TpivPP = tetra- $(\alpha,\alpha,\alpha,\alpha-o$ -pivalamidophenyl)porphyrin, all porphyrins are dianions; MV^{2+} = methylviologen dication.

Table 1. Oxidation products of the catalytic system Zn(Hg) + MVCl₂ + TPPFeCl + Ac₂O + RH.^a

Substrate RH	Product (conc./mм)		Recycling number mol prod/mol cat	O_2 adsorbed / μ mol	Yield per O ₂ absorbed/%
PhNH ₂	p-HOC ₆ H ₄ NH ₂	(2.7)	9	100	3
PhNMe ₂	HCHO	(3.3)	11	24	18
PhOCH ₃	НСНО	(1.7)			
	PhOH	(1.8)	14	68	8
	o-HOC ₆ H₄OCH₃	(0.7)			
PhOCD ₃	НСНО	(0.3)			
	PhOH	(0.3)	5	85	2
	$o ext{-HOC}_6 ext{H}_4 ext{OCD}_3$	(0.8)			
CH₂[CH₂]₄CH₂	CH ₂ [CH ₂]₄CHOH	(3.0)	10	36	12
	-	(7.0)	25	32	30
		(8.3)	33	51	25
cis-CHMe[CH ₂] ₄ CHMe	cis-ĆHMe[CH ₂] ₄ ĊMeOH	(3.2)			
	trans-CHMe[CH ₂] ₄ CMeOH	(0.7)	67	18	
	sec. 1,2-Dimethylcyclohexanols	(5.5)			

^a Reaction conditions: MVCl₂ (0.1 mm), Ac₂O (10 mm), RH (1 m), TPPFeCl (0.3 mm), MeCN (1 ml, solvent), 20 °C, 30 min. ^b With TF₅PPFeBr. ^c With TpivPPFeBr.

Table 2. Comparison of chemical model systems with cytochrome P-450.

	Retention of	Regioselectivity:	Kinetic isotope
System	configuration ^a /%	tert.: sec.: prim.	effect: $k_{\rm H}/k_{\rm D}^{\rm b}$
$Zn(Hg) + MVCl_2 + TPPFeCl + O_2 + Ac_2O$	60	2.8:1a	7
$[TPPFeO_2]^- + Ac_2O^c$	60—70	$3.3:1:0.8^{d}$	7
Cytochrome P-450	100^{e}	7.5:1:0.07 ^{d,e}	7—8 ^f

^a Oxidation of cis-1,2-dimethylcyclohexane (tert.: sec.). ^b Hydroxylation of anisole. ^c Data from ref. 4. ^d Oxidation of isopentane.

oxidation the Fe-porph complex is partially consumed. For TPPFeCl, TF₅PPFeBr, and TpivPPFeBr the loss corresponds to 50, 5, and 15%, respectively. 1 mol of Ac_2O is consumed and 2 mol of acetate formed per mol of O_2 absorbed. In cyclohexane oxidation with TF₅PPFeBr, the reaction stoicheiometry is $ROH:O_2:Ac_2O=0.3:1:1$. Compared with P-450 oxidation, less ROH is formed per mol of O_2 and Ac_2O consumed, probably owing to side oxidation reactions of Fe-porph and MVCl₂ in the model system.

In the somewhat similar system described recently by Tabushi⁷ reductive O₂ activation was achieved with Pt+H₂ as a reducing agent and benzoic anhydride as acylating agent. Cyclohexene is oxidized to the epoxide in only 5% yield per mol of O₂ absorbed. The comparison of our catalytic system with a stoicheiometric reacting system and the P-450 system shows important similarities (Table 2). It may be concluded that the same active unit, presumably [(porph)FeO]⁺ is active in all three systems, hydroxylating the C-H bond in a non-radical fashion.⁴

In order to determine the type of O–O bond cleavage occurring in the catalytic system, dioxygen labelled with ^{18}O (47%) was used, and the products were analysed by mass spectroscopy. The cyclohexanol and acetate produced contained $C_6H_{11}^{18}OH$ and $CH_3CO^{18}O^-$ (40 and 27%, respectively). Thus mono-oxygenase-type O–O bond cleavage was essentially confirmed. The catalytic cycle for the model system may be represented in a similar way to that of P-450 (Scheme 1).

1). The rate of cyclohexane oxidation in the presence of TpivPPFeBr is 1.1 cycle/min, the rate controlling step being the generation of MV+*. In the Tabushi system, 7 the rate of cyclohexene oxidation is 0.8 cycle/min for TpivPPFeCl. The

rate of cyclohexane oxidation in the native P-450 system is 8.8 cycle/min. 12

Thus, the catalytic system described here for the hydroxylation of C-H bonds in alkanes behaves similarly to native cytochrome P-450.

Received, 24th October 1986; Com. 1525

References

- 1 A. E. Shilov, 'Activation of Saturated Hydrocarbons by Transition Metal Complexes,' Reidel, Dordrecht, 1984.
- S. G. Sligar, K. A. Kennedy, and D. C. Pearson, *Proc. Natl. Acad. Sci. USA*, 1980, 77, 1240.
- 3 J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo, and B. J. Evans, *J. Am. Chem. Soc.*, 1981, **103**, 2884.
- 4 A. M. Khenkin and A. A. Shteinman, J. Chem. Soc., Chem. Commun., 1984, 1219.
- 5 C. H. Welborn, D. Dolphin, and B. R. James, J. Am. Chem. Soc., 1981, 103, 2869.
- 6 M. Schappacher, R. Weiss, R. Montiel-Montoya, A. Trautwein, and A. Tabard, J. Am. Chem. Soc., 1985, 107, 3736.
- 7 I. Tabushi, M. Kodera, and M. Yokoyama, J. Am. Chem. Soc., 1985, 107, 4466.
- 8 A. M. Khenkin, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 2329.
- 9 (a) A. B. Sorokin, A. M. Khenkin, and A. A. Shteinman, in 'Fundamental Research in Homogeneous Catalysis,' ed. A. E. Shilov, Gordon & Breach, New York, Vol. 2, 1986, p. 745; (b) A. M. Khenkin and A. E. Shilov, *React. Kinet. Catal. Lett.*, 1987, 33, in the press.
- U. Frommer and V. Ullrich, Z. Naturforsch., Teil B, 1971, 26, 322.
- 11 J. R. Lindsay Smith, R. E. Biggott, and P. R. Sleath, J. Chem. Soc., Chem. Commun., 1982, 55.
- 12 M. B. McCarthy and R. E. White, J. Biol. Chem., 1983, 258, 9153.

e Data from ref. 10. f Data from ref. 11.